
Journal of Statistical Physics, Vol. 82. Nos. 1/2, 1996 

On the Muitifractal Analysis of Bernoulli 
Convolutions. I. Large-Deviation Results 

Fran~:ois Ledrappier ~ and Anna Porzio 2 

Received January 20, 1995; final May 22, 1995 

We show how the formalism developed in a previous paper allows us to exhibit 
the multifractal nature of the infinitely convolved Bernoulli measures v~., for y 
the golden mean. In this first part we establish some large-deviation results for 
random products of matrices, using perturbation theory of quasicompact 
operators. 
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1. I N T R O D U C T I O N  

1.1. Problem I. The S ingular i ty  of the  Golden M e a n  Bernoul l i  
Convolut ion  

Let e~, e2 .... be a sequence of  i n d e p e n d e n t  r a n d o m  var iables  each t ak ing  the 
values  + 1 and  - 1  with equa l  probabi l i ty .  The  p robab i l i ty  d i s t r ibu t ion  of 
the r a n d o m  var iable  ( l - y )  ~,,~ o eny", 0 < y <  1, defines a measure  vy 
which is called an  infini tely convo lved  Bernoul l i  measure  or  s imply  a 
Bernoul l i  convo lu t ion .  F o r  y > 1/2 it is a difficult, old, and  no t  yet com-  
pletely solved p r o b l e m  to decide on  the n a t u r e  of  yr. t~3"14"~~ Recent ly  
So lomiak  132) proved  that  for a lmos t  all y ~ [ 1/2, 1], v~, is absolu te ly  con-  
t inuous ,  improvilag a result  of  E r d 6 s / t ~  The  work  of  Alexander  and  
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Yorke (t~ relates to dynamics this old arithmetic measure problem. They 
consider the map ( x , y ) e (  - o o ,  +oo)  x 1- --1, + 1] ~ T~,(x,y): 

T ) , ( x , y ) = f y x + l - y ,  2 y - - 1  if y>~0 
y x - ( 1 - y ) ,  2 y + l  if y < 0  (I)  

For  1 / 2 < y <  1, T~, is the "fat" baker's transformation: the map is not 
invertible, the at tractor is the whole square [ - 1, + 1 ] x [ - 1, + I ], and it 
possesses a Sinai-Bowen-Ruelle measure whose transverse component  is vy. 
Recall that the Hausdorff  dimension (HD)  of  a Borel probability measure 
Ct on a compact  metric space M is the H D  of the smallest set of  full 
measure: HD(It ) = inf{ HD( Y), Y:/t( Y) = 1, Y c M}. Young {331 proved that 
iflt is a Borel probability measure on a compact  Riemannian manifold, and 
t f p  a.e. 

lim log/.t(B,(x)) c~ (2) 
- o log e 

[B~(x) is an e-ball centered in x] ,  then HD(/a) = ~. In the dynamical system 
context (1) the limit existsJ  33'24"23) Alexander and Yorke, relying on the 
work of Garsia, ~13''41 found numerically the value HD(v~,) for y = g o l d e n  
mean. Alexander and Zagier ~21 and Lalley 1'9) have a theoretical entropy 
formula for f l = g o l d e n  mean which agrees with this ~]~ empirical result. 
Bovier ~s~ has another proof  of  the singularity of v~, in that case. 

In ref. 22 we described ir~ great detail the invariant measure of  the fat 
baker's transformation, and we gave an explicit (i.e., numerically com- 
putable) theoretical formula for the dimension of  vy in this nice case. Our  
approach is dynamical; we introduced v~, as the transverse measure of the 
maximum entropy measure/a on the repelling set invariant for the contrac- 
ting maps of the square T o i = ( y X ,  y/2) and T ? ~ = (yx + 1 -- y, (y  + 1 )/2). 
By refs. 24 and 23 we know that v~, always satisfies (2), so that all notions 
of dimension coincide. Our  approach strongly relies on the Markov struc- 
ture of the two-dimensional system: indeed, if y = g o l d e n  mean, the fat 
baker's transformation has a very simple Markov  coding. The "ambiguity" 
(of order two) of  this coding, which appears when projecting on the line, 
due to passagers for the central, overlapping zone, can be expressed by 
means of  products of matrices (or order two). This product  has a Markov  
distribution inherited by the Markov  structure of  the underlying dynamical 
system. The dimension of  the projected measure is therefore associated with 
the growth of  this product;  our dimension formula appears in a natural 
way as a version of  the Furs tenberg-Guivarch formula. (~z']~ The result of  
Young (2) ensures that this quantity gives actually the (information) 
dimension of the measure. Observe that there are other r andom products 
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of matrices which might naturally occur in this problem (R, Kenyon, 
Y. Peres, and S. Lalley, 1.9~ private communications). 

We summarize in the following items the formalism and the results of 
ref. 22. 

( a )  T h e  s e t t i n g .  
T(x, y): 

T(x, y)= I ! '  
[;-),, 

We considered the (noninvertible) map (x, y)---, 

2y if y<~l/2, x<<,), 

2y--1 if y>~l/2, x>~l--fl 
(3) 

with y + y 2 = l .  Let A =  [ 1 - y ,  y] x [1 /2 ,1] ,  B = [ y ,  1] x [1 /2 ,1] ,  
C =  [0, 1 - y] x [0, 1/2], D = [ 1 - y, y] x [0, 1/2]. Since y + ),2 = 1, 
{A, B, C, D} is a Markov partition with compatibility rules: A --* C; B--* A, 
B, D; C--* A, C, D; D ~ B. That is, every point (x, y ) e  2" is coded by a 
sequence a(x,y)=aoal.., with aie{A,B,C,D} such that (x,y)~ao, 
T(x,y)ea, ..... T"(x,y)Ea ....... and conversely any compatible sequence 
aoa~.., defines a unique point (x,y)eX. We describe now the invariant 
measure we select. ~'I~ [0, 1] x [0, 1] we se t /~(To ~I) = ~_~t~" 'I),/L(T?*I)= 
�89 Once these invariance formulas and Markov compatibility rules are 
stated, the measure of all "cylinders" ao... a, can be computed, and ~t is the 
maximum entropy (log 2) Markov invariant measure. 

(b) Projection Rules, It is possible, and also easier, to under- 
stand the distribution of points (1 - y )  )-'. e,,y" on the line by looking at the 
two-dimensional system and not just its projection. We consider the y-adic 
expansion of x E [ 0 , 1 ] ,  x = Z i > o e i ) ,  ;, e ;~{0,1}.  Since y + y 2 = l ,  the 
admissible y-expansions of x are the sequences e(x)=ele,,.., of 0 and 1 
without two adjacent ones. ~25~ Of course the Markov partition is not 
necessary for the understanding of the two-dimensional dynamics; it was 
introduced to set down a "dictionary" for projecting it on the line and vice 
versa, i.e., a map �9 from the space of the admissible sequences aoa~.., to 
the space of the admissible sequences el e2... : ~(aoa,...) = el e2... We sum- 
marize it in Table I. 

Note that the shift does not commute with the projection. We were 
able nevertheless to use these rules to count how many and which Markov 
sequences have the same given projection. 

(c )  The Measure  v~,. We have constructed a map �9 from the 
space of the admissible sequences aoa].. ,  to the space of the admissible 
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Table I" 

a(x,y) e(x) a(T*(x,y)) r 

CCoa2... OOe3... a2a3.., e3e4... 
CAa2... OOe3... Ca3a4... lOts... 
DB~a3... 010e4... aaa4.., e4es... 
DBDa3... 01 Oe4.. .  Ba4as... OOe6... 
A CCa3... 010e4... a3a4.., e4es... 
A CAa3... 010e4... Ca4a5... 10e6... 
B~a 2... 10e3... a2a 3... e3e4... 
BDa2... 10e3... Ba3... Oe4... 

An asterisk denotes the second or third iterate of T. 

sequences ele2...: ~(aoa~ . . . )=e l e2 . . .  We define the projected measure vy 
as the image o f p  via ~: V cylinder e~e2...e~: 

v~,(e, ~2...~N) =#(r 

We call # {~-I(ele2. . .eN) } the "ambiguity" o f a o a l . . . a  N. 

{d} The  A m b i g u i t y  of  t h e  P r o j e c t i o n .  Our aim is "to count 
ambiguity": the projection rules have been constructed to know which are 
the Markov rectangles all projecting on the same interval of [0, 1 ]. We 
concentrate on the central, overlapping zone, whose Markov code is A C... 
or D B  . . . .  Observe that the y-coding of an interval I which lies in "the cen- 
ter"--i.e., is contained in [y2, y ] - -ha s  the form e ( I )=01 ,  nl,  01, n 2 . . . . .  

ni E N. This repeated structure allows us to use the projection rules just as 
if there were commutation between projecting and shift. We have to count 
how many sequences are produced between two consecutive passages 
through the center, i.e., passages above 01: it is clear that we can express 
how ambiguity propagates passage after passage by means of products of 
matrices. These matrices (indexed by n) simply count how many (words 
terminating with) A C  and D B  are produced by (a word beginning with) 
A C  in a passage for the center after the time n, and how many AC, D B  are 
produced by DB. 

Let 

Then we stated that the ambiguity # { ~ - ] ( 0 1 ,  n ~ - l , 0 1 ,  n 2 - 1  ..... 
n q -  1)} is given by 

M(nq) M ( n q _ t ) . . . M ( n ,  ( I ) )  

where M(n)  = A(k )  if n = 2k + 2 and M(n)  = B(k)  if n = 2k + 1. 
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Therefore {~-I(Ol, nl--1,  01, n 2 - 1 ,  01, n z - 1  .... } consists of 
Markov rectangles which are built by connecting the elementary Markov 
rectangles following the rule that we can connect two of them if and only 
if the beginning of the following one is equal to the ending of the preceding 
one. 

This means that we consider the Markov system of the space X of the 
elementary strings ( . , n - l , . ) ,  Vn~> I, the Markov measure on strings 
induced by/ i ,  and the associated transition matrix, denoted H. 

(e) The Lyapunov Exponent .  (12'15'16'21) Let (X,/z) be a (discrete) 
probability space, II(x,y) a Markov transition matrix such that p/- /=p,  
and II"(i,j) > O. Let M: X ~  nonnegative matrices of order two, such that 

log IM(x)l dlt(x) < oo. Consider the transition kernel Q(x, r y, ~) = 
I-I(x, y) gMt~,(~) on X x S ~ (S t is the circle); there is on Xx S ~ a measure 
N left invariant by Q: NQ=N; it has the form N=H(x)  vx(dr Consider 
the ergodic system (XNx S I, ~, P~ x v~0), where O:(x, r ~ (Ox, M(xo)r 
where {Ox}. =x .+~ is the shift on the space X "N of the trajectories {x.} of 
the Markov process; P~ is the measure on X N such that if x . ( x ) =  x., 
P~(x,,(x) = i) = p(i), and P.(X.+l(X) = j  Ix.(x) = i) = 1--I(J [ i). Let 
G(x, r = log(lM(xo) r162 Then 

1 log IM(x.) M(x,_I)...M(xo)r 1 " - '  = -  y~ 6(O'(x, r 
. Ir n ; = o  

converges P,(x) x Vxo(dr almost everywhere to 

IM(xo)r , , 
;t = )-" Is, log ~ HtXoJ Vxo(dr 

xO 

Because of the peculiar nature of the family of discrete measure { v~0 } , 
we were able to write an explicit formula for the exponent: 

2=1- L ~. (log IA(k)r 
6 k>~O r L Ir 

h >~ l , q ~*O 

• ~ LAr + (k + 1) ~ [ ~ ( r  + v~(r 

10 IB(k)r  1 v ) 1 VBB((b)_]/] g i - - - - - ~ - ~ - -  ~ Ac( r  1 ~ [roB(C)+ 

822/82/I-2-24 
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Finally, the dimension of vy is 

2 -- E log 2 
= dim(vz) E log y 

where E log 2 is a normalization and E log ~ is the almost sure value of 
the coding of the length of an interval in [y2  y]. 

1.2. Problem II. The Singular i ty  Spectrum of the Golden Mean  
I C B M  

Most of the known multifractal analysis is one-dimensional in essence. 
All the papers we know present variations and technical improvement over 
ref. 8, but follow the same general line. Among these, refs. 28 and 30 deal 
with Axiom A diffeomorphisms and study how one expanding and one 
contracting direction might interact. Our model is perhaps the first for 
which it had been possible to obtain a result on multifractal analysis in 
the case when two different positive rates of expansion interact in a non- 
trivial way. Although it is a very peculiar model of two-dimensional expan- 
sive dynamics, it yields some multifractal analysis for the very classical 
measure v~,, and this is the content of our papers. 

Consider the measure v~,, the infinitely, convolved Bernoulli measure 
associated with the golden number ?~ = ( - 1 + , f i ) / 2 .  We know 122~ that v r 
almost surely 

lim log vr(I(x)) =~  (1) 
I / ' 1 ~ 0  log I/(x)l 
x E [  

We plan to study the local exponent: 

~(x) = lim log vr(I(x)) 
I~l ~o  log  [/(x)( 

_'t" ~ 1 

if the limit exists. Let Bo=  { x : e ( x ) = ~ }  and let f (~)  be the Hausdorff 
dimension of B~. Multifractal analysis is concerned with the study of 
{(e , f (e) )} ,  the "dimension spectrum" of the measure v r. 

Thermodynamic formalism c6' 2ol provides a by now "classical" method 18 
to compute f(~).  Let Z,, -- Y'.I~A, v~.(I) p, where A, is an exponentially fast 
(with n) decreasing partition of the system, and let us suppose that the 
thermodynamic limit lim . . . .  (l/n) log Z~ exist and define a regular func- 
tion ("pressure") F(fl). Then, if we denote )7(~) the Legendre transform of 
F(/?), that is, infp(o~fl-F(fl)), then the large-deviation theorem states that 
#{l :v~, ( I )~  Ill s} behaves as exp(nf(~)) for large n. This result would 
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allow us to show that actually f (~)=f(0c) ,  that is, f(0t) is the Hausdorff 
dimension of B~, the set where the measure has a power-law singularity of 
strength 0t. This gives the meaning to f (~)  in terms of v~, and moreover 
provides a method to compute f(0Q as Legendre transform of F(fl). Our 
model does not allow us to work out estimates on the measure of uniform 
atoms and therefore we choose to consider a joint partition function 
G,(fl, F)=~.I~A. vy(I)al(I) F, the thermodynamic limit of which can also 
be studied via the large-deviation theorem. We have to deal with a two- 
dimensional version of it, because of the joint fluctuations of masses and 
volumes. Consequently, the dimension of the set of trajectories where the 
measure has a singularity of strength ~ will be the Legendre transform f(00 
of the (unique) function F realizing the "good" (mass/volume) section of 
the two-dimensional problem. 

Note that f(~),  while obtained as a section of a joint large-deviation 
function f(~,  l), is intrinsic to the dynamical system (t2,f, p). Indeed, if the 
pointwise limit 

lim logp~,(I(x))=e 
Ltl-o log I/(x)l 
.x 'E[  

exists and is equal to 0~ on a set B 0 of points x, then the limit exists and 
is the same for all subsequences of I(x), x ~ B~,, whose diameter goes to 
zero. We can then associate to B~ (via the construction of a Frostmann 
measure related to G) its Hausdorff dimension f(~).  

We report in this Part I how the perturbative approach usual in large- 
deviation theory for random products of matrices 126"4"3) can be applied to 
our model. For pedagogical reasons, and in order to simplify our formulas, 
we first set this theory in a simpler context and then we extend it. We state 
some properties of the thermodynamic function F. Our main result is the 
strict convexity of the pressure F in a neighborhood of zero, that is, the 
value of fl corresponding to the almost sure value of or. These results will be 
applied to the multifractal analysis in Part II. The perturbative approach 
only concludes near zero. 

2. C O N T R A C T I O N  P R O P E R T I E S  

In ref. 22 we studied the relations between a Markov partition Po for 
F and the y-adic partition of the x axis, to establish a dimension formula 
for the measure v~.. The vr measure of a 7-adic interval is computed by 
counting the rectangles of the Markov partition which project on it. The 
dimension of the measure is therefore associated with the growth of a 
random products of Markov matrices. These matrices are 
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Ill k+lj if n2 +2 M(n) = k +  1) 

k ) if n = 2 k + l  
k + l  

and M ( n ) -  M(x,),  where x,  e F-"Po. 
The space X N of {x,,},~N is a Markov process with distribution P~, 

such that if x , , ( x ) = x , ,  then P~,[x,=i] = p ( i )  and Pl,[x,+l = j [ x , , = i ]  = 
n(j[ i), where the initial distribution /t and the transition matrix 
rc(i [J);~u.j~N are described in ref. 22. If n~...nq is the coding of a y-adic 
interval, then its vr-measure equals 

Im(x,,q...M(x,,,)l 

2(x,t + ... +.,-@ 

and its length equals l(x,,,)+ ... +l(x,q), where /(x,,,) is the length of an 
interval e [0, 1 ] whose y code is 0100. . . - -n ;  times 0--001 (see ref. 22 for 
more details). 

The aim of this section is to prove a contraction property of the 
random matrices S,, = M(x,,) M(x ,_  ~)...M(xo). 

If x and y are two vectors of R 2, 

x= (x~'~, y=(Yt) 
\x~] Y2 

we define the distance 

[ x l y 2 - x 2 y l [  

[[x[]- [[YI[ 

Therefore ~ is the absolute value of the sinus of the angle between .~ and 
)7. We denote by S the unit circle in R-'. Let 

fi(Mx, My) 
c(M) = sup 

.,...,,~s 6(x, y) 
Then 

c(M) <1/5 if M =  k + l  ' 

0 otherwise 

k :~0  

This proves the following result. 
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Lemma 2.1. The following condition holds: 

E(c(M) ) < p < 1 

and we can take p = 1/2. 

We need also the following result. 

L e m m a  2.2. The transition matrix /-/(j[ i) satisfies the Doeblin 
condition. 

Proof. By ref. 9 it suffices that S,,(i)=S~l-l(jl i)  converge to 1 
uniformly in L But this is true, because the transition matrix is made up of 
three repeated rows. Equivalently it can be shown that there exists a 
positive integer n and an uniformly positive column for the matrix 
l-I"(jli). This can be expressed by the equivalent condition: 3n such that 
sup;,k Z j  IP~-P;ql < 1. The Doeblin condition guarantees the existence, 
uniqueness, and ergodicity of the invariant (under /7)  measure p. Never- 
theless, we already know, by construction, that there exists a stationary 
ergodic measure. 

We turn now to the contraction property (with respect to the distance 
~) of our matrices. The "singularity" coming from "even" matrices 

for which c(M) = 0 can be easily removed by "forgetting" the contribution 
due to them. 

L e m m a  2.3. There exist p, < 1 and c > 0  such that, uniformly in 
Xo, u, v and Vr/> 0 

~..0 ~( ~ ~.u,~., s,,~)~) j~- ~.0 ( ~/M/..-,,)...M/~o/.,~., ~x,,).~/.. M/~o)~))', .< c.,~ 
Proof. If M(xi) is an even matrix, then 6(S,,u, S,,v) equals zero, 

so, Vn 

(a_(s,,u,s,,v)y' 
E"~ 6(u, v) / 

(~(S,,u,S,,v)),, 
= ~ ~(x, I xo)...~(x,, Ix , ,_ , ) \  ,~(u,v) / 

x I .,..x" n 

?(S,,u.S,,v!~. 
.< y' ~(x, I xo)...rc(x, l x, ,_,)k a(u,v) 1/ 

Xl . . .Xn  o d d  
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 ,(11 o) 

( 6(Mu, Mv)  ~ <<. c( M)  < p < 1 
~(u, v) / 

(a(S,,u,S,,o)y, 
Ex0\ cS(u,v) / <~ Pxo{ X l = fCl . . .x , ,  = . ~ , ,  g:i o d d }  <~ cp'( 

We choose in the following 1/< 1. 

3. THE SPACE L,o AND THE OPERATOR T(p} 

We introduce the functional space L ~  and the operator T(fl) on L,o 
so that the study of the iterates T"(fl) becomes possible: the properties of 
T"(fl) allow us to infer easily the limit behavior of the partition function G,, 
(see Section 1). 

In this section we state some properties of quasicompactness of T(O). 
Then we use the perturbation theory of quasicompact operators. 

Def in i t ion  3.1. Let St,~/4.,~/._] be the circle sector {u~S,  
re/4 < u < n/2}. Let us fix 0 positive and 0 < r/< 1. Let L,o be the space of 
the functions ~b: Xx  S[./4,,t/23 ~ C such that 

Ir u)l Ir u ) -  r v)l 
lie(x, u)ll,,.o=sup + sup 

.,-o.,, (llxo[I + 1) ~ .,o.,,~,, (llxoll + 1)~ v)" 
< c X )  

We write 

I[f(xo, u)[[,1,o --fo~ + m,,(f)  
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Let us introduce the operators  on L,,.o: 

T(fl) f(xo, u) = E_,_o( eai~ f (  x, , M(xou) ) ) 

T(O) f(xo, u) = Pf(xo, u) = ~ r~(xl I xo) f ( x , ,  M(xou) ) 
Xl 

Nf(xo, u) = E X n(Xo) vxo(v)f(xo, v) 
XO P 

We state the following result. 

P r o p o s i t i o n  3 .2 .  P is a bounded opera tor  on L~o. 

Proof. We have 

Ief(xo, ,,)1 
(llxo II + 1)~ " k (llxo II + 1)~ ) 

I f (xo,  u)l 
~< sup - If l  

.,.o.,, (llxoll + 1) ~ 

Also, 

Ief(xo, u ) -  W(Xo,  v)l 
(llxo [I + l)  ~ 6(u, v)" 

~< E,.o ( I f (Xl ,  M(xou)) - f ( x , ,  M(xov))l 
�9 t,I IIx, II + 1) ~ (6(M(xou), M(xov)))" 

( <$( M( xou ), M(xov)))" (llx~ II + 1 )o,~ 

• (6(u, v))" (llxoll + 1) ~ ) 
<~ m,,(f) E.,.o((C(M(xo))),l (llx~ II + 1) ~ ~< cm,l(f) 

We show that  P is a quas icompact  operator:  

P r o p o s i t i o n  3.3.  The following condition holds: 

lim I[P"-NI  ~1~ < 1 
1 1 4  O0 

Proof. W e  have 

P"f(xo, u)= ~ rc(xl I xo)...n(x, I x , _ l ) f ( x , ,  M(x,,_l)...M(xo)u) 
x 0 . . .  X n  

Nf(xo, u) = ~ ~. n(Xo) V,.o(V)f(x o, v) 
x 0 v 

377 
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Then 

I(P" - N) f(xo, u) -- (P" -- N) f(xo, v)l 

(llxo I[ + 1 )o O(u, o)" 

le'Y(Xo, u) - e " f ( x o ,  v)l 
(llxo II + 1 )o 6(u, v) ~ 

[ so_,v))-  ]1,2 {(,~(S.__!u , ",  
<~ mq(f)  Ex~ (cj(u,v))~ JJ 

<~ mq(f) I ~_, 
k x o . . . x n  odd 

- - a s  in Lemma 2.3: 

[Exo(( IIx. II + 1 )20] 1/2 

( ( ~ ( S n _ z U  , S n _ 2 [ ) ) )  2 q ' ' "  ( ( ~ ( u ,  v)) 2q JJ  2 k J 

<~m,7(f) cp"/2 <~ mq(f) cp'~/2 

Similarly, 

I( P " -  N) f(xo, u)l 
(llxo I[ + 1 )  ~ 

= E..-o (f(x. ,  M,~._,...Mxou)- ~, ~ nxoVxo(V) f(xo, v)) 
x 0 v 

x (llxo II + 1) - ~  

Note that n x v is invariant under P = T(0), so 

Z E ~r(Xo)vxo(v)f(xo, v)=E ~_, 7rxoVxo(U) T"(O)f(xo, u) 
X 0 O Jr" 0 It 

Then 

Exo(f(x.,S._lu)-~Tr(Xo) ~Vxo(V)f(x.,S._lV)).(JlXoll + 1) -~  
xO U 

,,,xo,,+ 

If  one of  the matrices of  the product  S .  is even, Vu, v, then S.u = S. v and 
the above sum equals zero. Then, we rewrite this sum as 

Exo(~ ~(xo) vxo(v) I f(x ' 's"-lu)-f(x" 's"-lv)l  
.o ( ~ ( S . _  l u. S . _  1 v))~ 

(,~(S._au, S._iv))" (llx. II +1)  ~ ) 
x (6(u,v)) ~ (llxoll+l)O(llx. ll+l)O 
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<<.m.(f) ~ rt(Xo)v.:o(v ) 
A'O,U 

( (O(Sn-lU'Sn~lO))2qll/2 
x T~ ~(x. lx._,)...~(x, I xo) (a(u,7';  

Xl...Xn o d d  

x I ~ rc(x. lx,,_,)...r~(x, Ixo) (llxo(llx"+l)'-~ + 1)2~ 
xI ,..Xn 

<~mn(f) ~ n(Xo)Vxo(V) 
xo.U 

• Y'. n(x,,Ix._,)...~(Xl Ixo) 
Xl...xn o d d  

(8(S,,_lu, S._1v) )  2'I (6(Mu, My))  -'~] 1/2 

x(,~(S._2u, S._,_v))"'c'" ( ~ ( u , ~  ] 

x[ E IXo)("x""+!)-'~ 
.~, ...... (llxoll + 1)-'~ 

<~ m,,(f) Z rC(Xo) ~" vxo(v) 
v 

[ ] 1/2/k20\1/2 
x x~oaan(Xl IXo)p"  ~ ~ - # )  <~m,7(f)?P" 

In conclusion, we have shown that  

l i P " -  NI[..o = I [ ( P ' -  N)f [ [  ~ +rn,,((P"-- N)f) 

<~ cp"(m,~(f) + If[  ~ ) 

which implies that  

] I ( P "  - N) f l],~,o <~ p. 
Ilfll~.o 

As ( P " - N ) =  ( P - N ) ' ,  then the limit l i m . ~  ~ liP " -  ~r" 1/. equals the limit �9 v i i rL  0 

_ ~r~-, ~/,, This limit exists by subadditivity and is smaller than lim . . . .  II(P " ' ,  ,,i,0" 
1 by the above estimates. 

4. P E R T U R B A T I O N S  OF T H E  O P E R A T O R  T 

In this section we set some regularity properties 
operators  T(fl). 

of the family of  
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Let fl be complex, Ifll small. Following ref. 3, we introduce the 
operator  

T(fl) f (  xo, u) = Exo( ePl~ lM(~~ f ( x l , M( xou ) ) ) 

whose n th iterate is 

T"(/3) f ( xo ,  u) = E,.o(ePl~176176 M ( x , _  1"" M(XoU) ) ) ) 

because of the cocycle property of f log IM(xo)ul/lul. 
Following ref. 3, we have the following result. 

Let Re fl < O. There exists three positive constants c i, 

e p log IM(xo)ul/lul __ e p log IM(xo)vl/Iv[ I 
(a) E,. 0 (5(u, v))" (llx0 II + 1) ~ cl 

( log  IM(xo)ul/lul - loglM(xo)vl /Ivl . '~ 
(b) E~.o 

�9 _ (~ (u ,  v) )" ( l lxol l  + 1) ~ ) ~<c_~ 

[ e a tog IMtxo)ulllul'xl 
(c) e.,.ot ( oi7 ) c3 

Proof  o f  (a). We have 

IIMull a - I I M v l I p ~  <1/71 I IMII  Ilu-vll  
IIMulI' - z  

~< IPI' IIMll. IIMII R~ I lu -  vii 

so that the expression in (a) can be bounded by 

(a)~<supE~0{ II MIl~~ l lu-vl l  "~ 
,.~ �9 \ ( ~ ( u ,  v))" (llxo II + 1)~ 

Since Ilu - vii ~< ~ ~(u, v) ~< v /2  6(u, v) '1, we have 

(a) <<. ~ E~. o ( IlM(x~ <~ x /~  
" \ ( l l x o l l + l ) ~  

Proof  o f  (b).  We have 

IIMII 
log II Mu ll -- log IIMvll ~< s u p -  I lu-  vii 

,, IIMull 

L e m m a  4 .1 .  

c2, c 3 such  that :  
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so that 

((IIMI/IIMul) l u -  vl (b.),<sup e=o t,(--D-~, 77V ( I-i7-x~7 7 ?) 
( IIMII ,~(u, v) 1 

~< sup E"~ \ II--M--ffull (c~(u, o))" (llxo I + 1)o/~<c2 
It ,  V 

Proof o f  ( c ). We have 

( llM(xo)l: "~_< ((HXoll_+_!_)=~ 
(c)=e=ot.(~iu (llxoll+l)O)<c3 

P r o p o s i t i o n  4.2. The family {T(fl)}#,Rr is a family of class 
C k of bounded operators on L,,.o. 

Proof. We have 

I r ( f l ) f (xo ,  u)l 
(IXo II + 1)~ 

if O>~Refl. 
Similarly, 

(ePl~176 M(xou))'~ 
-E.,.o \ ~ ~  -) 

IM(xo)ul: 
~< Ifl  o~ Exo(llx~ II + 1) ~ (llxo II + 1 )o ~< c Ifl  oo 

IT(P)f(xo, u)-  T(p) f(xo, v)l 
(llxo II + 1) ~ (c~(u, v))" 

f el~[loglMt.,.o),la/i,,if(xl , M(xou) ) -- f ( x l ,  M(xov) )[ <~ E,. o 
�9 ~, (llXl l[ + 1 )o (d(Mu, M v ) ) "  

(d(Mu, My))" I llx~ II + 1)~ 
x (6(u, v))" (llxo II + 1)~ 

(efll~176 ~ - e fll~176 f ( x , ,  M(xou) )( IIx, II + 1)~ 

+ E"~ \ (6(u,v))" (llx~ll+l)~ 

<~ m,~(f) sup E,,. o ( IM(x~ c(M(xo)) '7 (llxo II-4- 1) ~  
.... \(llxoll + 1) ~ 

c~(u, v) (llx~ II + 1)~ 
+c~ I f l~  sup Exo IIM(xo)ll R~a (c~(u, v)) - - - - - ~  (Ixoll + 1)~ 

II. V 

by Lemma 4.1. Again by Lemma 4.1, 

<~m,,(f) c4 + cs If] 
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To prove differentiability, write 

d n 
dfl" T(fl) f (xo,  u)=  E..o(log" [M(xo)u[ eal~176 M(xou)) ) 

and compute the L.,o-norm of the derivatives: 

dfl" r. P o~ m,~ 

The second term is bounded as follows: 

I(d/dfl") T(fl) f (xo,  u) - (d/dfl") T(fl) f (xo,  v)l 
(11.%11 + 1)~ (~(u, v))" 

/~. ,, ) <~ m,i(f) E.o (IM(xo)ul/ '  log- IM(xo)ul 
\ (NXoll + I )  ~ "(c(M*,~ ))"(llx'll+l)~ 

+ Ifl.~_ E,-o ( IM(x~ Ilog IM(xo)ul - l o g  IM(xo)vl I 
�9 \ (g(u, v ) ) " ( l l xo~+ i i  ~ (llxt II + 1) ~ 

n - -  I ) 
x ~ log IMul' log I M u l " - ' - '  

i = 0  

+ I f l~  E,-o (log" IM(xo)ul (I IM(xo)ul/S-log IM(xo)vlal) 
�9 (~(u, v))" (11%11 + 1) ~ 

x (llx~ II + 1 )o) 

[because a " - b " =  (a - b )  Zg-1  aib, ,- i-]] 

<.m,,(f) I E,.o ( IM(xo)ul 2a l~ IM(xo)ul'~] i/2 

x [e . , .o(( l lx  t II + 1)20] 1/2 

[ (]l~176 m 
+ l f l ~  E.,-o \ (~(u,v))2,,(llxoll+l)2O 

I (]M(xo)uJ.Zs )],/2 
x E.,. o \ (11.% II + 1) 20 (llx~ II + 1)2~ 

+ifl~o[E,.o(l~ (fix, ]l + I)2~ '12 
�9 (11.% il + l )o 

x [ (i '" 
(llxo II + I)  0/2 (c~(u, p))" ) J 

which, by Lemma 4.1, is bounded by C(m,,(f) + I f l  ~), where Cis a constant. 
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Similarly, for the first term 

I(d"/dfl") T(fl) f (Xo ,  u)l 

(llxoll + 1 )  ~ 

= E,-o ( [M(xo)u]  t~ log'_' ]M(_xo)u[f(x , , M(xou) ) ( ] l x ,  II + 1)~ 

" \ (llx, II + 1) ~ ( l lxo II + 1)~ 

< C Ifl 
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5. SPECTRAL PROPERTIES 

We use the Ck-perturbation theory of operators  to deduce the spectral 
properties of  T(fl). Following refs. 3 and 4, we state the following results. 

P r o p o s i t i o n  5.1.  If T(fl) is a C k family of  operators  on L,l.o and if 

p = lim II T"(O) _ ,Anl (l/,,) < , .  ,io 1 
n ~  o~ 

where N is a rank-1 opera tor  on L,~o, then, in a neighborhood of O, 

T(fl) = 2(fl) N(fl) + Q(fl) 

where (1) Z(fl) is the simple maximal  isolated eigenvalue of T(fl) and 
)o(0)=1; (2) N(fl)  is the rank-1 projector  associated with 2 and 
N(fl) Q(fl) = Q(fl) N(fl)  = 0; (3) fl ~ Z(fl), fl ~ N(fl),  fl ~ Q(fl) are functions 
of class Ck; and (4) 12(fl)l > (2 + p ) / 3  and Vp ~<k 

This theorem prepares the way for the large-deviation results we shall 
establish in the next section. 

6. LARGE D E V I A T I O N S  OF THE A M B I G U I T Y  

Here we obtain a large-deviation theorem as a corollary of the preced- 
ing theory. We have first a corollary. 

Corol lary  6.1. We have 

2'(0) =,~ 
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By Proposition 5.1, for all (Xo, u), 

l d  . 
2'(0) =l im--5-  ~ T X(xo, u)[p=o 

n ~  

We have 

so that 

d 
T'l(xo,  u)lfl=0 =Exo log IM(x.)...M(xo)u] up 

2'(0) = lim 1E,. ~ log [M(x.)...M(xo)u] 
n ~ c~ 17 

which equals 2 by the ergodic theorem. 
For ]ill sufficiently small, set 

Z.(fl)(Xo, u) = Exoefll~176 

and 

Fl(fl) ~ log ~(fl) - 2fl 

Corollary 6.2. For any (Xo, u) 

lira _1 log Z,(fl)(Xo, u) =Fl(fl)  
,'1 ~ oo I I  

the function F~ is convex, F1(0)=0, and dF,/dfl= 2'(fl)/2(fl)- 2; in par- 
ticular, F',(0) = 0. 

Definition 6.3. We have 

f , (a)  = inf_ {F,(f l)-aft} 
I//I < / /  

Definition 6.4. We define 

0 -2 ~ 2 h ' ( 0 )  - -  2 t 2 ( 0  ) 

We can finally state the large-deviation theorem (see, e.g., ref. 27): 

Proposition 6.5. If a 2 is strictly positive, then Fl(fl) is strictly 
convex in a neighborhood of zero [F~(fl)~a2fl z] and there exists r 
such that the function f~(~) is defined for l a ]<r ,  is strictly convex 
[ f l ( t X )  ~ - - ( t % 2 / O ' 2 ) ] ,  and 
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1 
- log  P.,.o(log ] M ( x , ) . . .  M ( x o )  u ] - n2 > n0c) 
/'/ 

,,_ , f l (00  if - r < ~ < 0  

1 
- log  P, .0(log [ M ( x , ) . . .  M ( x o )  u[ - -  n2  < noO 
n 

. . . .  , f l (00 if 0 < ~ < ~  

i.e,, 

Remark. By the spectral theorem, 

1 d 
a-'=,_o~lim nd-~-5 Z,,(fl)lp=o 

a 2 = lim 1 E,.0(log LM(x,,)... M(xo) ul - 172) 2 
17 

(s,,_ = lira E,.o k)-" 

IM(xl)  M(xo)u 
M(xo)u 

where 

S,, = log ]M(xo) u + log ~-...log 
IM(x,,)...M(xo)u[ 

M(x,_l)...M(xo)u 

cr 2 is therefore the variance of the r andom variable S, Ix/~. 

7. STRICT POSlTIVITY OF THE V A R I A N C E  

The following argument  is due to Ph. Bougerol. The same argument  
allows us to show, in the next section, that  the pressure F ( f l ) =  
lim . . . .  ( I /n)  log Z,,(fl) is a strictly convex function in a neighborhood of 
zero. 

We can state the following theorem, by refs. 21 and 3. 

P r o p o s i t i o n  7.1.  There exists ~b in L,r o such that  

XO u 

+qb(xl, M(xo)u)-ck(Xo, u)) 2) 
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and r solves r  T(0)r  = ~, q/(x0, u) = Ex0(log M(xou))-  2 
property") .  

P r o p o s i t i o n  7.2.  The following condit ion holds: 

a 2 > O  

Ledrappier and Porzio 

("cocycle 

Proof. We know that  

o2=y ~ ~(Xo) vx0(v) 
x 0 v 

x ~ (log IM(xo)ul - - 2  + r  M(xo)u) - r u)) 2 n(xl IXo) 
XI 

If a 2 is zero, then for n x v almost  all (Xo, u), Pxo almost  all x, 

log IM(xo)ul-2 + r  M(xo)u)-  r u ) = 0  

By stationarity of  n x v we also have for a lmost  all (Xo ..... x., u) 

r  M(x,_l)...M(xo)u) 

- ~. n(x,+, I x , )  r  M(x,)...M(xo)u) 
, V n + l  

IM(x,)... M(xo) u[ 
= l o g  [M(x,,_l)...M(xo)u [ - 2  

Summing in n yields for almost  all (Xo ..... x,,, u) 

r M(x,,_ ]).-.M(xo)u) 

- log I M ( x , , _  1)'." M ( x o ) u l  - n2  - -  r  u) = 0 

We can therefore state the following result. 

P r o p o s i t i o n  7.3.  a-' is zero if and only if rr x v-almost all (Xo, u) 
and Vn 

log [M(x,)...M(xo)u [ -- 2(n + 1) 

= r 1, M(x,).. .M(xo)u)-r u) P~0-a.s. 

Let us show that these equalities are impossible. Since v is a discrete 
measure, it is sufficient to choose a point  (i) with v((|l)) > 0  and to show 
that  log(]M(x,)...M(xo)u] e -"'+l); is bounded below by 2n on a set of  
positive measure for P"  wile r stays bounded on the same set. 

x o 

Choose 

M(xo) . . . . .  M(x")=M(O)=( 11 01) 
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Then P'(xo = 0 , . . .x ,  = 0) ~ 2 - "  > 0 and 

l o g ( M ( x , ) . . . M ( x o ) ( l  ) = l o g  (~  11)(I ) = l o g ( n + 3 )  

and Ilog(n + 3) e -~'+ l~'l grows as n, whereas 

2 

and since ~b is in L,~.o we have that  I~(Xo, u)l/(llxoll + 1)~ 
So, 

2 O, <<.( l lOil+l)O-(4+l)o-C 
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8. T H E  " ' N O R M A L I Z E D ' "  O P E R A T O R  

This is the opera tor  

T(fl) f (  xo, u)= E,.o( eatl~176176 x I , M( xou ) ) ) 

where g(xo) = log 2 "+ 1 if x0 = ( . . .n . . . ) .  
The n th iterate is 

T"(fl) f (xo,  u) 

= E.,.0(e[P~og IM~.,-,~...M,,0),,]/I,,I e -ag~-,~l + ... + g~xo)f(x,,, M(x ,  _ t... M(xo u)))) 

All the properties stated in the preceding sections remain true for the above 
opera tor  T modulo  a slight change of the space L,~o. The natural  space L,~o 
is now the space of functions such that  

Ir u)l Ir u ) -  r v)l 
I1' I1,,o = sup 2oll.,.0t I + sup 2011x011di(u ' v) 'r < oo 

xO, u .x" 0 `  u ~ u 

Note that  the arguments  of Section 7 are again true with kbl < 2  0 and 
Ilog Z . e - ' ~ ' l  ~ n ,  and 0 <  1. 

9. T H E  " J O I N T "  O P E R A T O R  

For  application to the multifractal spectrum the results of  Sections 7 
and 8 are not sufficient. We introduce the opera tor  "joint parti t ion func- 
t ion" and we modify slightly the functional spaces we work  with. We use 

8 2 2 / 8 2 / I - 2 - 2 5  
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the preceding theory to prove notably the strict convexity of the pressure 
in a neighborhood of zero, and to state a large-deviation theorem. 

So we finally consider the operator  

T(fl l , fl2) f (  xo, u) = g x o (  e[11' l~ lM(xo)"l ]/lUte -11' z~-"~ ea'J~"~ ( x l , M(  xou  ) ) ) 

where g(Xo) = log 2 "''~ + t and l (x  o) = log 7 It'~ +1 if Xo = ( . . .n. . . ) .  
The nth iterate is 

T ' ( f l l ,  f l 2 ) f ( x o ,  u )  = E , . o ( e  [a t  I~176 g(x, , )+ ... + g(x0l 

x e a2t(-'')+ "'" +t~x~ M ( x . _  l . . . M ( x o u ) ) ) )  

D e f i n i t i o n  9.1.  Let 01, Oz be two positive real numbers. Let 
L,i.o,,o2 be the space of  functions f : X x S - - * C  such that Ilf[I,,o,,o,<OO, 
where 

Ir u)l Ir u ) -  r v)l 
[[fll,.o,.o_, = sup 9o~ IIxuIl( [IX011 -[- 1 )02 + sup .,-o., - xo., , ,~, ,  2~176 Ilxo II + 1) 02 6(u, v)" 

We have the analog of  Proposit ion 4.2.: 

P r o p o s i t i o n  9.2.  T([31,/32) is a family of  class C k on DI x D2 of  
bounded operators of L,~o, o2, where D~, i =  1, 2, is the disk of center 0 and 
radius [fill < 0if2 < 1/2 in C. 

Similarly we have a spectral theorem Analog Proposi t ion to 5.1. 
Let us introduce V(x o, u) 

G(flt ,  fl,_) = lim 1 log T"( f l l ,  f12) l(xo, u) 

This limit exists by the spectral theorem. 

P r o p o s i t i o n  0.3.  There exists a function F defined on a neighbor- 
hood of  zero such that F ( 0 ) = 0  and G(fl, F ( f l ) ) = 0 .  Moreover,  F(fl) is of 
class C k. 

Proof.  By the implicit function theorem, it is sufficient to show that 
(O/Oy) G ( x , y ) 4 = 0  for x, y in a neighborhood of zero. By the spectral 
theorem, we can compute  (8/Oy) G, the derivative of the limit, as the limit 
of  the derivatives, that is, as the limit, for n --* oo, of  

g x o (  e[  XlogIM(x,,)... M(xo),d ]/lul e - xg(x,) + ... + g(xo) 

x e y/(''') + "'" +1("~ + ... + l(xo)))  

x { E,.o(eL"~~ IM(x,,)...M(xol,,I ]/lul e -xg(x,) + ... + g(XO)eVtlx.)+ ... + t(.~o)) } - t 
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which we rewrite as 

E,.o( e-~logS,,e -X~,eyl,( l,) ) 
E.,.o( e-,tog S,,e -.~g,e :,l, ) 

and (O/Oy) G(0, 0) = E(xo) log y, which we know to be <0. We also know, 
by now, that G(x, y) is strictly convex in its two variables separately, by 
the arguments of Section7. Then, by continuity, (O/Oy) G < 0  in a 
neighborhood of zero. 

Corol lary  9.4. We have 

o-~ G(p, F)  + 6(/~, F ) .  F(p) = 0 

J u s t  differentiate the equality G(/?, F(fl))= O. 

Let oc(/?) _ -(0/0/?) F(/?). Def in i t ion  9.5. 

Coro l la ry  9.6. We have 

( O/~/?) G 
o~(~) - - -  

( O/OF ) G 

In particular, with the notations of ref. 22, 

)L - E log 2 
~ ( 0 )  = = 

E log y 

and 0 < ~ <  1. 

The most important property of F is given in the following result. 

Proposi t ion 9.7. For Ifl[ sufficiently small 

0 2 
- - F > 0  0/? 2 

Proof. Differentiating G(/?, F(f l ) )=0,  we have 

0 
6(/?, F(/?)) ~ V(/?) O--~ G(/?, F(/?) ) + ~-~ 

op 
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and 

0 z 0 02 
Off 2 G(fl, F) + 2 ~-fl r o ~  G(fl, F) 

+ - ~ F  G(fl, F)+ - ~ F  -~_G(fl, r ) = o  

Let F ( f l ) = - 6 f l + a 2 ( f 1 2 / 2 ) +  ... (F being regular, we can use the implicit 
function theorem to obtain an expansion of F near zero): 

Oz 02 f~  02 
OflzG(O,O)-Z6 0 ~ G ( O , O ) + a ~  G(O,O)+d2-~ffi_G(O,O)=O 

i,e.~ 

" Gl2)"  Gll" 2 G_~2 a i = ~  (G21+ t~ = Q ( 6 ,  1) 

Note  that  this quadrat ic  form Q(~, 1) is the variance a 2 associated with the 
opera tor  T(fl)-T(fl,  ~fl), to which we can apply the arguments  of 
Section 7 (because it depends only on one variable). Let us turn first to 
G(fll,fl2) (slightly modified by subtraction of averages, which we can 
always suppose to be zero) and let us consider its n th  iterate applied to the 
function l(x0, u): 

G"(fll, f12) l(xo, u) = E,.0(e[P' ,o, tu(-,-,)... M(.,'o),,I ]/I,,I e-/~,(g(x.) +... + g(-"o)) 

x e--nf l l (7--El~ + "'" +l(x~176 

We set f12=6fll, where ~ is a real, arbi t rary parameter .  We have 

Gn(fll, t~fll ) /(Xo, u) = Exo(e[#lloglM(x,,)...Mtxo)ul]/I,le--lll(g(x,,)+... + g(xo)) 

x e-"fl'(7- Elog2)et~fll(l(xn) + .,. + I(xo)) e -,t,~//i Elog 7) 

and, in the abridged notat ions introduced above in this section, 

d 
, o - -  ) t( Xo, u) 
tap 

= Exo((log S, - g , , -  n ( y -  E log 2) +6(1,,- nE log y)) 

X e f l l l~  - i l l  gne --n[31(),- Elog2 )e,Sfll Ine--m5fllElog), ) 
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and finally 

d 2 
dfl~ G"(O, O) l (x  o, u) = E,.o(log S,, - g,, - n(y - E log 2) + 6(1, - nE  log y))2 

{ Note  that  in Section 7 we had 

d 2 
dfl~ T"(O) l (x  o, u) = E.,.0(log S,, - n(y - E log 2)) 2 } 

The argument  of  Section 7 implies that  3~ = ~ba ~ L,I ~ such that  (cf. Proposi-  
tion 7.2) 

o-~,= .y__, ,~(Xo)v,.o(v).y_, ,,(.,.-, lxo) [ IM(xo)ul 
log 2txol 

x 0 . t ,  x l  I_ ], 
- y + E log  2 + ~(l(xo) -- E log  y) + ~)(xl, M ( x o ) u )  -- r  u) 

where ~ solves 

r u ) - ~  n(xt  I Xo) r  M ( x o ) u )  

[M(xou)l  
= log 21.,.o~ - y + E log 2 + 6l(Xo) - 6 E  log y 

Similarly, we have that aa = 0 if and only if rcx v-almost all (Xo, u) and Vn 

IM(x,,)...M(xo)ul 
log 2~.,.0 + ... +.,.,, ) (y + E l o g  2)(n + 1) 

+ 6((l(xo)  + ... + l(x,,)) - (n + 1 ) E log y) 

= ~(x,,+ 1, M ( x , , ) . . . M ( x o ) u ) - ( O ( X o ,  u) P,'.0-a.s. 

On the same set of  positive measure as in Section 7, we have 

] ~ ~,(2~,,~-,,1o,") ) + 

Now, the 1.h.s. equals l o g ( n + 3 ) + n c l  +t~nC 2, whereas the r.h.s, can be 
bounded by 2 st. This implies that  (because of  the logari thms) it is 
impossible to solve this equation for all n. 

This shows that  tr~ cannot  be zero and consequently (O2/OflE)F c a n n o t  

be zero. 
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Definit ion 9.8. Let 

f(o~ +6)  = sup. {(o~ +O) f l -F( f l ) }  
I#1 < #  

Corollary 9.9.  The function ~ f ( ~ + 6 )  is strictly convex in a 
neighborhood of zero, f ( 6 )  = 0, and f ( ~  + fi) < 0 if ~ :/: 0. 

10. LARGE-DEVIATION PROPERTIES 

We state a large-deviation theorem which we shall apply to the multi- 
fractal spectrum in Part  II. Let 

G(p~,/L,) 

lim 1 log E~o(eC/~'l~176 
n ~ oc  n 

X e - f l l [ g ( x n ) +  "'" + g ( x ~ 1 7 6  "'" + l ( x o ) - - n E I o g f l ]  

Let F(fl) be the unique solution of G(fl, F(fl))=O, let f ( ~ + 6 ) =  
inflpl</~{(ct+6)fl--F(fl) } [i.e., f (~+6)=f l (~ t+6) (~+6) - -F( f l (o~+6) ) ,  
fl(ct) the unique solution of 0c=F'(fl(ct))].  The large-deviation theorem 
states that 

log P-,o log 2(.,-~ ..- +.,,,----i > 0q, -17 (l(xo) + ... + l(x,)) < ~,_ 

, ~  ) o'(0q, ~_) 

if el < e l ( m a x ) ,  ~_, > ~2(max), with (cq(max), ~2(max)) being the point of 
the maximum of the convex function 

a(~, ,  ~2)=  sup [ ~, fl, + o~_fl,_- G(fll, f12)] 
#l ,#,. 

We introduce the constraint ~ = (~ + 6)~_~ so that 

tr((~ + 6) ~z, ~x2) = sup [Ca+ 6) 0c2fll "~ OC2fl 2 - -  G ( f l  I , f 1 2 ) ]  
//I .#2 

and, if the supremum is attained at the point 

(/~((~ + 6) ~_, ~2) , /h((~ + 6) ~2, ~,_)) - (/~*,/~*) 

we have 

O'((IX "1- 6)  ~X2, ~X2) = (0~ -[- 6)  Of.2fl ~ -'[- Of.2fl ~ --  G(fl*, fl*) 
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so that 

d~ 
-7- = (e + 6) fin + (~ + 6) ~,_[ (e + 6) a,~? + a,_fl ? ] 
am2 

+P% + ~_E(e + 6) alP* +a,_p*] 
OG OG 

-oo--__p [(e + 6 ) o , ~ '  + o,_p,*] --~oop,_ [(~ +6)  o,/h* + o_,L,* ] 

Combining this with the equations for the stationary point (fl*, f12).* ' 

we obtain 

aG , , 

( ~ + 6 )  e,_ = ~ l  (/~,, p,  ), 

OG 
e,  = ~ (p ?, ~*) 

0#2 

If we look for the point e2(critical)=e2(c) such that G(f l~, f l~)=0 (we 
shall see the meaning of this point in Part II), we obtain 

da 
- -  ((e + 6) e2(c), e , (c))  = (e + 6)/~* + p* = ~(e + 6) 
de, 

for some function ~ and 

~((e + 6) e2(c), e,_(c)) = e,(c)[ (e + 6) p* +/~* ] = r + 6) e2(c) 

Now, G(fli, f12) = 0, OG/Ofl2 r  allows the inversion fl*-f12 (fit), so that 

q~(e+6) = ( e + 6 )  fl* +fl* = ( e + 6 )  fl~ +fl2(fl, ) 

i.e., 

~(e + 6) = (e + 6)/~f'((e + 6) ~_,(c), e_,(c)) +/~,*(/~ ?((~ + 6) e,(c), e,_(c))) 

which is precisely (o: + 6) fl(e + 6) + F(fl(o: + 6)) or, in other words, ~(e + 6) 
is the Legendre transform of the unique F such that G(fl, F ) = 0 ,  i.e., 
q/(~ + 6) is f ( e  + 6), and also a((e + 6) e2(c), e2(e)) = o~2(c)f(e + 6), where 

OG 
e,_(c) =~-~ [/~i'((e + 6) e,_(c), ~_(c)), F(/~*((e + 6) e,(c), e_dc)))] 
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